Electronics - II | Department of Physics

Electronics - II

Overview Digital Electronics is an advanced course for students in which rigorous scientific approach driven hands-on training is provided on handling and designing basic components in digital electronic devices.  The pre-requisite for this course is well-versed understanding of analog electronic systems as offered through courses like PHY206, PHY104 etc. At the end of this course, students are expected to demonstrate competency in handling and designing digital devices.   Detailed Syllabus Introduction of Digital Systems comparing Analog Systems, Logic Levels: Introduction to Number System: Binary, Decimal and BCD, Logic Gates and discussion up to 3/4 input, Truth Table, Boolean Algebra, Boolean Circuit simplifications using algebra, Handling an unknown digital circuit through Truth table, De Morgan’s Theorems, Sum of Products (SOP) & POS, Introduction of Karnaugh Map: Need beyond Truth Table, Circuits simplification through K-map, Parity Checker, K-map working examples, K-map simplification using Max terms, Don’t care condition using Max terms/Min terms, Comparator and Gate circuit as memory: NOT gate Latch, S-R Latch, Clock Input and Clocked S-R Latch as Flip-Flop, D-Flip Flop & J-K Flip-Flop, Multiplexer and Demultiplexer, Synchronous counters, Shift Register, Examples of comparative circuits between Synchronous counters and shift 
register, Difference between systematic and non-systematic counting: Introduction to Ripple Counter, Ripple counter concludes, Examples of Ripple and Synchronous Counters, D/A converter with examples, A/D converter with examples, Logic family: TTL and CMOS

Course Code: 
Course Credits: 
Course Level: